Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev. Soc. Bras. Med. Trop ; 55: e0590, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1407001

ABSTRACT

ABSTRACT Background: Based on the current need for new drugs against malaria, our study evaluated eight beta amino ketones in silico and in vitro for potential antimalarial activity. Methods: Using the Brazilian Malaria Molecular Targets (BraMMT) and OCTOPUS® software programs, the pattern of interactions of beta-amino ketones was described against different proteins of P. falciparum and screened to evaluate their physicochemical properties. The in vitro antiplasmodial activities of the compounds were evaluated using a SYBR Green-based assay. In parallel, in vitro cytotoxic data were obtained using the MTT assay. Results: Among the eight compounds, compound 1 was the most active and selective against P. falciparum (IC50 = 0.98 µM; SI > 60). Six targets were identified in BraMMT that interact with compounds exhibiting a stronger binding energy than the crystallographic ligand: P. falciparum triophosphate phosphoglycolate complex (1LYX), P. falciparum reductase (2OK8), PfPK7 (2PML), P. falciparum glutaredoxin (4N0Z), PfATP6, and PfHT. Conclusions: The physicochemical properties of compound 1 were compatible with the set of criteria established by the Lipinski rule and demonstrated its potential as a drug prototype for antiplasmodial activity.

2.
J. venom. anim. toxins incl. trop. dis ; 27: e20200073, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1154769

ABSTRACT

he resistance against antimalarial drugs represents a global challenge in the fight and control of malaria. The Brazilian biodiversity can be an important tool for research and development of new medicinal products. In this context, toxinology is a multidisciplinary approach on the development of new drugs, including the isolation, purification, and evaluation of the pharmacological activities of natural toxins. The present study aimed to evaluate the cytotoxicity, as well as the antimalarial activity in silico and in vitro of four compounds isolated from Rhinella marina venom as potential oral drug prototypes. Methods: Four compounds were challenged against 35 target proteins from P. falciparum and screened to evaluate their physicochemical properties using docking assay in Brazilian Malaria Molecular Targets (BraMMT) software and in silico assay in OCTOPUS® software. The in vitro antimalarial activity of the compounds against the 3D7 Plasmodium falciparum clones were assessed using the SYBR Green I based assay (IC50). For the cytotoxic tests, the LD50 was determined in human pulmonary fibroblast cell line using the [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. Results: All compounds presented a ligand-receptor interaction with ten Plasmodium falciparum-related protein targets, as well as antimalarial activity against chloroquine resistant strain (IC50 = 3.44 µM to 19.11 µM). Three of them (dehydrobufotenine, marinobufagin, and bufalin) showed adequate conditions for oral drug prototypes, with satisfactory prediction of absorption, permeability, and absence of toxicity. In the cell viability assay, only dehydrobufotenin was selective for the parasite. Conclusions: Dehydrobufotenin revealed to be a potential oral drug prototype presenting adequate antimalarial activity and absence of cytotoxicity, therefore should be subjected to further studies.(AU)


Subject(s)
Bufanolides/administration & dosage , Bufonidae , Biodiversity , Malaria/immunology , Antimalarials , In Vitro Techniques , Computer Simulation
3.
Mem. Inst. Oswaldo Cruz ; 114: e180465, 2019. tab, graf
Article in English | LILACS | ID: biblio-984757

ABSTRACT

BACKGROUND Owing to increased spending on pharmaceuticals since 2010, discussions about rising costs for the development of new medical technologies have been focused on the pharmaceutical industry. Computational techniques have been developed to reduce costs associated with new drug development. Among these techniques, virtual high-throughput screening (vHTS) can contribute to the drug discovery process by providing tools to search for new drugs with the ability to bind a specific molecular target. OBJECTIVES In this context, Brazilian malaria molecular targets (BraMMT) was generated to execute vHTS experiments on selected molecular targets of Plasmodium falciparum. METHODS In this study, 35 molecular targets of P. falciparum were built and evaluated against known antimalarial compounds. FINDINGS As a result, it could predict the correct molecular target of market drugs, such as artemisinin. In addition, our findings suggested a new pharmacological mechanism for quinine, which includes inhibition of falcipain-II and a potential new antimalarial candidate, clioquinol. MAIN CONCLUSIONS The BraMMT is available to perform vHTS experiments using OCTOPUS or Raccoon software to improve the search for new antimalarial compounds. It can be retrieved from www.drugdiscovery.com.br or download of Supplementary data.


Subject(s)
Humans , Computational Biology/organization & administration , Molecular Docking Simulation , Drug Design
4.
Mem. Inst. Oswaldo Cruz ; 111(12): 721-730, Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-829257

ABSTRACT

The main challenge in the control of malaria has been the emergence of drug-resistant parasites. The presence of drug-resistant Plasmodium sp. has raised the need for new antimalarial drugs. Molecular modelling techniques have been used as tools to develop new drugs. In this study, we employed virtual screening of a pyrazol derivative (Tx001) against four malaria targets: plasmepsin-IV, plasmepsin-II, falcipain-II, and PfATP6. The receiver operating characteristic curves and area under the curve (AUC) were established for each molecular target. The AUC values obtained for plasmepsin-IV, plasmepsin-II, and falcipain-II were 0.64, 0.92, and 0.94, respectively. All docking simulations were carried out using AutoDock Vina software. The ligand Tx001 exhibited a better interaction with PfATP6 than with the reference compound (-12.2 versus -6.8 Kcal/mol). The Tx001-PfATP6 complex was submitted to molecular dynamics simulations in vacuum implemented on an NAMD program. The ligand Tx001 docked at the same binding site as thapsigargin, which is a natural inhibitor of PfATP6. Compound TX001 was evaluated in vitro with a P. falciparum strain (W2) and a human cell line (WI-26VA4). Tx001 was discovered to be active against P. falciparum (IC50 = 8.2 µM) and inactive against WI-26VA4 (IC50 > 200 µM). Further ligand optimisation cycles generated new prospects for docking and biological assays.


Subject(s)
Humans , Antimalarials/chemistry , Aspartic Acid Endopeptidases/chemistry , Cysteine Endopeptidases/chemistry , Molecular Dynamics Simulation , Protozoan Proteins/chemistry , Thapsigargin/chemistry , Computational Biology/methods , Molecular Targeted Therapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL